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Exercice 1. Répondre à chacune des questions suivantes en cochant la case correcte.
1. SoitB = J7(λ) un bloc de Jordan de taille 7. Que vaut δλ(2) = dim

(
Ker (B − λ · I7)2) ?

□ δλ(2) = 1
□ δλ(2) = 2
□ δλ(2) = 5

2. Soit J = Jm(λ) un bloc de Jordan de taille m. Est-ce que J est diagonalisable ?
□ Oui, toujours.
□ Oui, si λ ̸= 0, mais non si λ = 0
□ Oui, si m = 1, non sinon.

Exercice 2. On note {e1, e2, e3} la base canonique de C3 et {ε1, ε2, ε3} ⊂ (C3)′ la base
canonique duale. On considère les vecteurs {v1, v2, v3} de C3 définis par

v1 = (1, 1, 1), v2 = (1, 0,−1), v3 = (0, 1, 1).

Vérifier que ces vecteurs forment une base de C3 et trouver la base {φ1, φ2, φ3} ⊂ (C3)′

duale de {v1, v2, v3}.

Exercice 3. Soit V un espace vectoriel sur un corps K (de dimension finie ou non) et
E ⊂ V un sous-ensemble non vide quelconque. Supposons que pour tout x ∈ E il existe
une forme linéaire φx ∈ V ′ telle que pour tout y ∈ E on a :

φx(y) ̸= 0 ⇔ y = x.

Montrer qu’alors E est une famille libre. La réciproque est-elle vraie ?

Exercice 4. Soit V un K-espace vectoriel de dimension n. Soient α, β ∈ V ′ deux covec-
teurs non nuls tels que Ker(α) ̸= Ker(β). Démontrer que dim(Ker(α) ∩ Ker(β)) = n− 2.

Exercice 5. Soit V un K-espace vectoriel de dimension finie et x ∈ V un vecteur non
nul. Prouver qu’il existe une forme linéaire θ ∈ V ′ telle que θ(x) ̸= 0.

À votre avis ce résultat est-il encore vrai pour un espace vectoriel de dimension infinie ?

Exercice 6. Soit V un K-espace vectoriel de dimension finie n. Parmi les assertions
suivantes, lesquelles sont correctes ?

a) Pour tout covecteur φ ∈ V ′ on a dim(Ker(φ)) = n− 1.
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b) Si v ∈ V est un vecteur non nul, alors il existe un covecteur ψ ∈ V ′ tel que
ψ(v) = 1.

c) Étant donné v ∈ V \ {0} fixé, il existe un covecteur ψ ∈ V ′ non nul tel que
ψ(v) = 0.

d) Soit B = (v1, · · · , vn) une base de V . Soient ψ1, · · · , ψn des formes linéaires sur V .
Alors elles forment une base de V ′ si et seulement si la matrice (ψi(vj))1≤i,j≤n est
inversible.

e) On considère les formes linéaires sur R3 définies par φ1(x, y, z) = 3x − y + z,
φ2(x, y, z) = 3 x+y+z, φ3(x, y, z) = 3x−3 y+2 z. Alors ces trois formes linéaires
sont linéairement indépendantes.

f) Si V est de dimension n, pour tout sous-espace vectoriel U ⊂ V de dimension
n− 1, il existe φ ∈ V ′ telle que Ker(φ) = U .

Exercice 7. On a vu dans un exercice précédent que deux matrices congruentes ne sont
pas toujours semblables. Qu’en-est-il de l’implication inverse : Deux matrices semblables
sont-elles toujours congruentes ?

(Prouver cette affirmation ou donner un contre-exemple )

Exercice 8. On note C0(R) (ou C0(R,R)) l’espace vectoriel des fonctions continues de
R dans lui-même. Pour chaque élément a ∈ R on note δa : C0(R) → R la masse de Dirac
en a définie par δa(f) = f(a).

1. Prouver que l’ensemble {δa}a∈R ⊂ C0(R)′ est une famille libre de l’espace vectoriel
dual de C0(R).

2. Soit −∞ < a < b < ∞. Rappeler pourquoi l’intégration sur l’intervalle [a, b]
dénotée par I[a,b](f) =

∫ b

a
f(x)dx définit un élément du dual C0(R)′.

3. Supposons à présent que −∞ < a < b < c < ∞. Les covecteurs I[a,b], I[b,c] et I[a,c]
sont-ils linéairement indépendants ?

4. (*) À votre avis, peut-on exprimer le covecteur I[a,b] comme combinaison linéaire
des covecteurs {δa} ? (Justifier votre réponse.)

Exercice 9. On peut définir deux formes bilinéaires sur l’espace des m× n matrices par
les formules Tr(A⊤ ·B) et Tr(A ·B⊤) :

Mm,n(K) × Mm,n(K) → K
(A,B) 7→ Tr(A⊤ ·B)

Mm,n(K) × Mm,n(K) → K
(A,B) 7→ Tr(A ·B⊤)

Ces formes bilinéaires sont-elles égales ou différentes ?
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Exercice 10. On sait du cours d’analyse que l’exponentielle d’une matrice carrée permet de
résoudre les systèmes d’équations différentielles linéaires du premier degré. Grâce au théorème
de la forme normale de Jordan, on peut ramener ce problème à l’étude de l’exponentielle des
blocs de Jordan. C’est ce que nous faisons dans cet exercice.

Rappelons que l’exponentielle d’une matrice carrée A ∈ Mn(R) est définie par la série
exponentielle :

exp(A) =
∞∑

k=0

1
k!A

k

(La convergence de cette somme est démontrée dans le cours d’analyse).
1. Trouver une formule pour exp(Jm) où Jm = Jm(0) est un bloc de Jordan nilpotent

d’ordre m (commencer par m = 2, 3, 4).
2. Montrer que si AB = BA, alors exp(A+B) = exp(A) exp(B).
3. Trouver une formule pour exp(Jm(λ)) où Jm(λ) est un bloc de Jordan de taille m

avec valeur propre λ (commencer par m = 2, 3, 4).
4. (Exercice d’analyse supplémentaire) Sur Mn(R), définissons la norme de Frobenius

par

∥A∥ =
√

Tr(AtA).

(i) Montrer que ∥ · ∥ est une norme (c’est-à-dire, satisfait aux propriétés énoncées
dans la Proposition 11.1.7 page 46 du polycopié).

(ii) Montrer que ∥ · ∥ est multiplicative : pour tout A,B ∈ Mn(R), on a

∥AB∥ ≤ ∥A∥ ∥B∥ .

(iii) En déduire la convergence absolue de la série exponentielle associée à une
matrice arbitraire A ∈ Mn(R).
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